

Page 1 of 19

September 2018
FOR PUBLIC RELEASE

SECURITY REVIEW:
ENJIN CRYPTO SMART

WALLET

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 2 of 19

This document has been cleared for public release by:

Maxim Blagov, CEO of:
Enjin

16 Raffles Quay #33-03
Hong Leong Building

Singapore 048581

The purpose of penetration testing is to identify potential system vulnerabilities and generate a
report on the detected vulnerabilities that will enable Enjin to rectify any defects in the security of
the product and thereby increase the security level of the application.

Enjin understands that information security is by its nature continuously subject to change, and that
the penetration testing performed by the consultants, and recommendations aimed at rectifying
detected defects shall not imply that the application and the information system of Enjin is
completely secure. Enjin understands that it is not possible to run all existing tests, and that it is
impossible to test vulnerabilities in the software or hardware which were not known and/or available
at the time of testing, i.e. it is not possible, in terms of time and practical considerations, to test each
component of the system for all input/output values.

The public release of this document is only to state that security testing is performed against a
specified testing object and to be transparent against Enjin’s internal security practices.

This document is redacted in relation to the original, classified report. Only operational security info
was removed (full request dumps, etc.), all vulnerabilities and issues are retained and no found
vulnerabilities or issues were removed from this report.

Unauthorized disclosure, duplication, modification or use of this document without Enjin’s

permission is strictly forbidden and will be prosecuted to the fullest extent of the law.

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 3 of 19

Table of Content:

Report Summary 4
Scope of testing 5
Out of scope 6
Penetration Testing Methodology 7
Vulnerability classification and ranking: 9
Findings - Enjin Mobile Wallet Android application 10

Found issues: 10

Missing tampering and debugging detection (Low / Informational) 10
Insufficient obfuscation in the APK (Informational) 10
Insufficient Device Binding (Informational) 11
App logs information to Logcat (Informational) 11

Approvals: 12

TLS Interception Detection (Approval) 12
Application is not debuggable and does not backup app data (Approval) 12
No information leakage in the app switcher (Approval) 12
Root level access detection (Approval) 13
Sensitive input cannot be cached or copied to clipboard (Approval) 13
Cryptographic material is stored in Android Keystore (Approval) 13
No sensitive functionality exposed through IPC (Approval) 13
No sensitive information found in memory (Approval) 14
App overlay detection (Approval) 14
No ability to take screenshots when making backup (Approval) 14
No severe issues found by automated scanners or manual review (Approval) 14

Findings - Backend API 15

Found issues: 15

Implement specific whitelisting and validation for deterministic variables (Low/Informational) 15
No authentication between the wallet and the backend API (Low/Informational) 15

Approvals: 16

No additional content or endpoints were discovered (Approval) 16
TLS is enforced (Approval) 16
No injection vulnerabilities found (Approval) 16
No deserialization vulnerabilities found (Approval) 16
No XXE vulnerabilities found (Approval) 16
Note on XSS and CSRF (Approval) 17
Note on access control, authorization and direct object references (Approval) 17
No severe issues found by automated scanners or manual review (Approval) 17

About Oru & Contact information 18
Appendix 1. 19

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 4 of 19

Report Summary

The purpose of this report is to present the findings that were discovered during the penetration

testing engagement between Enjin and Oru, where the goal of this penetration test was to perform

a penetration test against:

1. Enjin Crypto Smart Wallet for Android

2. Backend API that is used by Enjin Crypto Smart Wallet

The penetration test was performed as the second in succession external independent penetration

test against Enjin’s Android Smart Wallet, to verify implemented controls that were set up since the

last third party external penetration testing and private internal security testing.

During our testing, we only found a few low risk issues that do not compromise the security of the

wallet software or the signing keys, but should be implemented to aid in the defense in depth

principle of the software.

The backend source code we analyzed is very well written, readable and uses current best practices.

Although the API is critical to the operation of the wallet no critical security decisions are made on

the API since it only serves as a connector to other systems and networks (Bitcoin, Ethereum,

Litecoin...) and it relays the transactions that were generated on the mobile device. We found minor

issues in the API, which mostly are tied to defensive programming practices.

Retesting of the testing objects after the penetration test showed that the Enjin team has addressed

all low risk issues as stated in Appendix 1.

Overall Posture:

Our finding is that the overall security posture of the wallet application and the backend API is

solid for the required risk profile and that the software is developed according to current security

best practices which are required for a product that warrants a high level of security.

We found no issues that could be used to compromise the wallet or the cryptographic keys

stored in the system in the scope of our penetration test.

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 5 of 19

Recommendation Summary:

We recommend that the Enjin team addresses the following low risk issues in the following order:

For the mobile wallet:

1. Missing tampering and debugging detection

2. Insufficient obfuscation in the APK

3. App logs information to Logcat

4. Insufficient Device Binding (Optional)

For the wallet backend API:

1. Implement specific whitelisting and validation for deterministic variables

2. No authentication between the wallet and the backend API (Optional)

Scope of testing

Penetration testing was performed by two consultants:

1. doc.dr.sc. Tonimir Kišasondi - Principal security researcher, Oru

2. Tomislav Turek, mag.inf. - Security researcher, Oru

From the Client side, the engagement was authorized by:

1. Maxim Blagov, CEO of Enjin

2. Witek Radomski, CTO of Enjin

The testing objects that were submitted by Enjin for the penetration test are:

1. Source code of the backend API service for the Enjin Crypto Smart Wallet with the commit

hash aee0eaa9940d6daaef095290a5de90cf284f8263.

2. Active testing version of the API that was connected to the testing version of the Android

APK (black box test).

3. Testing version 1.3.0-audit of the Android APK with certificate pinning and obfuscation

removed to help with testing of specific attacks (black box test) with SHA256 hash:

○ 5b7843f818a06e75d413a566a210c53a768c5670b109a9d2eb7cd49f1e19efc5

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 6 of 19

4. Release version 1.2.3 of the Android APK (available from: https://enjinwallet.io/apk.html)

that was used to estimate and check and evaluate anti-debugging, anti-reverse engineering

and anti-tampering controls (black box test) with SHA256 hash:

○ e8e411eff11c3e24b9a6b08c82c78159bed9f56d8c21cbb5462fa45f417921b3

Retesting of the testing objects after the penetration test showed that the Enjin team has addressed

all low risk issues as stated in Appendix 1.

The objectives of this test were to simulate the following scenario and test the following hypothesis:

1. Simulate an attacker that can install the APK on his wallet and:

a. Use the obtained knowledge from the installed APK to glean enough information to

compromise a third party wallet on an unrooted, modern Android device with

software based attacks against the wallet software.

b. Use the obtained knowledge to attack the backend API and compromise the

backend.

c. Check if the there is any benefit to the attacker if he compromises the backend API

or controls the backend API.

d. Check for possible backdoors in the code or any other method that can be used as a

backdoor.

Out of scope

● We did not focus on hardware level attacks like side channel attacks or attacks on hardware

platforms.

● Our tests were carried out with an assumption that the underlying Android OS is running on

a modern, hardware backed android keystore with an unrooted Android OS.

● We did not cover any attacks that assume the Android OS or the hardware/firmware of the

platform is compromised.

● ARM assembly code and the source code for the wallet were not in scope.

● Connected APIs and services since the wallet API serves as a connector to other production

APIs from third parties (Ethereum network, Bitcoin network, etc...)

Retest information:

Retesting the testing objects after the penetration test was done, shows that the Enjin team has

addressed all found issues as stated in Appendix 1.

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 7 of 19

Penetration Testing Methodology

Oru’s penetration testing approach is focused on optimizing the conducted tests and the time that is

available to uncover security vulnerabilities in the testing object. Since it is not possible to run all

possible tests, nor it is possible to test for vulnerabilities that are not known and/or available at the

time of testing, nor it is possible in terms of time and practical considerations to test every

component of the system for all possible input/output values and scenarios that could occur to test

the entire attack surface, we tailor our testing to discover vulnerabilities that could have the most

potential risk and impact, regarding a possible threat scenario, optimized for the ease of discovery

by a third party. This enables us to discover vulnerabilities that have the biggest possible impact on

the system, but are practical and realistic according to the threat model of the testing object.

Oru’s penetration testing methodology relies upon following industry best practice standards:

Mobile Application penetration testing:

OWASP Mobile Top 10 - The Open Web Application Security Mobile Top 10 outlines the top 10

vulnerability classes on mobile devices, that were collected by the OWASP project’s Mobile Top 10

team and graded to find the most prevalent security issues in mobile devices. This document helps

us focus on the most pervasive, prevalent and detectable vulnerabilities in mobile applications. To

read more about the OWASP Mobile Top 10 project, please refer to:

● https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10

OWASP Mobile Testing Guide - The OWASP Mobile Testing Guide defines the industry best practice

mobile penetration testing methodology. The Testing Guide outlines both the Android and iOS

specific testing procedures, with a highlight on:

● Resiliency against reverse engineering

● Architecture, design and threat modelling

● Data Storage and Privacy

● Cryptography

● Authentication and Session Management

● Network Communication

● Platform Interaction

● Code Quality and Build Settings

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 8 of 19

Depending on the available time for the test, we optimize to run tests that would have the most

significant impact and could be discovered easily by an attacker. To read more about the OWASP

Mobile Testing Guide and the mobile penetration testing methodology, please refer to:

● https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide

Web Application penetration testing:

OWASP Top 10 - The Open Web Application Security Project’s Top 10 document outlines the most

critical web application security flaws for a specific year the document was created. According to the

latest OWASP Top 10 document: “The OWASP Top 10 - 2017 is based primarily on 40+ data

submissions from firms that specialize in application security and an industry survey that was

completed by over 500 individuals. This data spans vulnerabilities gathered from hundreds of

organizations and over 100,000 real-world applications and APIs. The Top 10 items are selected and

prioritized according to this prevalence data, in combination with consensus estimates of

exploitability, detectability, and impact”. The value in using this document as a reference on the

possible prevalence, exploitability, impact and detectability of a particular class of vulnerabilities,

helps us focus on finding the most prevalent and detectable vulnerabilities that could have the most

significant security impact. Uncovering the classes of vulnerabilities that are defined by the OWASP

Top 10 set is our highest priority. To read more about the OWASP Top 10 project, please refer to:

● https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

OWASP Testing Guide - The Open Web Application Security Project’s Testing Guide document

defines the industry best practice web application penetration testing methodology. The

methodology is very detailed and outlines 91 tests in a total of 11 categories:

1. Information Gathering

2. Configuration and Deployment Management Testing

3. Identity Management Testing

4. Authentication Testing

5. Authorization Testing

6. Session Management Testing

7. Input Validation Testing

8. Error Handling

9. Cryptography

10. Business Logic Testing

11. Client Side Testing

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 9 of 19

Depending on the available time for the test, we optimize to run tests that would have the most

significant impact and could be discovered easily by an attacker. To read more about the OWASP

Testing guide and the application penetration testing methodology, please refer to:

● https://www.owasp.org/index.php/OWASP_Testing_Project

Vulnerability classification and ranking:

This report will use the following scheme for vulnerability marking:

● Description of the vulnerability (Risk Level)

The report is using the following risk ratings, marked with their respective colors:

High - High risk vulnerabilities enable attackers unauthorized access to the application as a

privileged user and can have severe effects on the confidentiality, availability or integrity of data

and the entire system.

Medium - Medium risk vulnerabilities enable attackers unauthorized access to the application as a

normal user and can have negative effects on the confidentiality, availability or integrity of data in

the system.

Low - Low risk vulnerabilities give attackers additional information or a good starting point to

develop an attack in combination with other vulnerabilities

Informational - Informational statement, not a risk but might be interesting to consider and

implement since it will improve the security posture.

Approval - If a statement is highlighted green, this means that the implementation follows best

practices and is properly implemented.

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 10 of 19

Findings - Enjin Mobile Wallet Android application

Found issues:

Missing tampering and debugging detection (Low / Informational)

Both production APK and the provided testing object were missing APK modification detection

measures thus enabling us to change the APK to a debuggable state, resign it and install it on the

device. Along with the inability to detect that the APK has been changed, further debugging of the

changed APK via debugging tools showed us that debugging detection is also missing. This does not

compromise the security of the wallet in any way since an attacker cannot extract the signing keys,

but we nevertheless suggest implementing this mitigation in order to make the wallet maximally

resistant to reverse engineering and tampering.

Suggestions for mitigation

There is no complete security when tampering and debugging detection is implemented as it can still

be bypassed by a very well versed adversary and those methods serve as a deterrent. We suggest

implementing at least basic detection such as verifying the APK signature on the client side and

implement checks if the APK is in debuggable state or a debugger is connected or if the application

is being ran in an emulator to add more defense in depth. Upon detection, different actions can be

taken such as alerting the backend service or not executing the app at all.

Insufficient obfuscation in the APK (Informational)

Both the provided testing object and the production APK did not implement advanced obfuscation

techniques. Since a lot of logic is contained in native platform assembly language, an attacker needs

to have specific, advanced skills in order to fully reverse engineer the application. Although, a small

portion of logic is still contained in the APK and the implementation has little to no obfuscation.

Suggestions for mitigation

To achieve an additional level of obfuscation in the APK itself, use custom Proguard rules. An

alternative can be using some commercial obfuscators instead of Proguard such as Dexguard.

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 11 of 19

Insufficient Device Binding (Informational)

There is no device-wallet binding implemented in the application, which means it is possible to copy

data from one device to another device and change app data (specifically wallet data) with root level

access. This can be used as a wallet lock bypass method which will only expose the owner’s private

information such as coins, balance and transactions. In case of a lock bypass, private key is still not

exposed and cannot be used maliciously since the private key is stored in the Android Keystore and

cryptographically tied to the old password which was swapped with a different one.

Replacing the app data poses no risk to the wallet private keys and only has an impact on the wallet’s

basic data, which might be a privacy issue, if for instance a third party wants to obtain info about the

balance on a specific device, but since this is only a problem if a device is rooted, we consider it below

low risk.

Note: Device binding would allow Enjin to correlate which installed wallet has access to what

addresses. If Enjin decides to implement such measures, make sure to make deanonymization

attacks harder.

App logs information to Logcat (Informational)

When the APK is in a debuggable state, some non-sensitive information gets logged into Logcat.

Please keep in mind that it is not possible to view logs in Logcat if APK is not in debuggable state but

the logs may still be written to the device. Also, we did not notice any sensitive information logged

into Logcat.

Suggestions for mitigation

Before releasing the APK, remove logging calls. This can be done manually or, the simplest solution,

use a custom Proguard rule which removes logging calls from code in production builds:

-assumenosideeffects class android.util.Log {
 public static boolean isLoggable(java.lang.String, int);
 public static int v(...);
 public static int i(...);
 public static int w(...);
 public static int d(...);

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 12 of 19

 public static int e(...);
 public static int wtf(...);
}

This way, the logging capability will stay in the debug builds but will be removed in release builds,

hence no logs will be seen even if the release build is modified to a debuggable state.

Approvals:

In addition with found issues, we want to specifically outline some attacks and methods we tested,

where we found that adequate security measures have been implemented:

TLS Interception Detection (Approval)

We’ve conducted tests in order to confirm that messages sent between client and server cannot be

easily intercepted through a intercepting proxy and that certificate pinning is properly implemented.

The production APK correctly implements certificate pinning.

Application is not debuggable and does not backup app data (Approval)

Several tests confirmed that the application is not in a debuggable state and does not backup app

data, which means no sensitive information will be saved in the app data backups. To make sure this

stays this way, fix the low risk issue “Missing tampering and debugging detection” since this can be

modified by an attacker.

No information leakage in the app switcher (Approval)

During production APK use, we’ve observed that there is no possibility to view the contents of the

wallet (total balance, list of coins and their balance) via the app switcher.

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 13 of 19

Root level access detection (Approval)

The production APK was installed on a rooted device. The application correctly detected that a device

was rooted and showed a prompt with a notice to the user that it is not recommended to use the

wallet on a rooted device.

Sensitive input cannot be cached or copied to clipboard (Approval)

Production APK showed that all sensitive inputs use the Enjin Secure Keyboard. All manual tests we

performed for caching of input or copying input to the clipboard failed.

Cryptographic material is stored in Android Keystore (Approval)

Reverse engineered source code showed that all cryptographic key material is stored in the Android

Keystore. This means that cryptographic operations are never done through the application process

and keys may be bound to a Trusted Execution Environment of the device. We’ve tried to fetch the

keys by using a custom piece of malware we developed and moving it to a system app after

discovering the alias of the key in the Android Keystore. None of the apps (user or system) were able

to fetch the cryptographic material.

No sensitive functionality exposed through IPC (Approval)

Through several tests, we’ve found that only the main activity is exported and cannot be launched or

used by other applications. Other activities, services, providers or receivers are not exported. Also,

no browseable activities were found which can be invoked from the browser.

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 14 of 19

No sensitive information found in memory (Approval)

We’ve conducted tests by dumping the application memory when performing sensitive actions

(wallet unlock, wallet backup, …) and searching for sensitive information such as passwords,

cryptographic keys, etc. via the Android Profiler. We found no occurrences of sensitive information

in memory dumps.

App overlay detection (Approval)

We’ve wrote a custom user and system app which simulates a malicious app that overlays the screen

and collects user taps on the screen, which would enable an attacker to collect a wallet password.

When opening the wallet, Enjin Wallet app detected a screen overlay and did not proceed until the

screen overlay was shut down.

No ability to take screenshots when making backup (Approval)

On the production APK we’ve tried both taking screen captures and recordings. Regular user

screenshots are blocked with a notification, but captures that run from an ADB shell are not blocked.

Upon inspection of the made recordings, no app content was seen in the recordings, instead, only a

black screen was shown on both image and video.

No severe issues found by automated scanners or manual review (Approval)

In order to find the most obvious issues and vulnerabilities, we have scanned the app with several

automated scanners that are a part of our in-house solution for automatic source code and binary

analysis and did a manual review of the application.

None of the scanners or our manual review found any severe issues that were identified as true

positives, the scan results are available as an addition to this report.

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 15 of 19

Findings - Backend API

Found issues:

Implement specific whitelisting and validation for deterministic variables
(Low/Informational)

Most of the parameters like addresses, amounts, transactions etc. used in the backend API are very

deterministic. The current codebase does not perform whitelisting or validation on deterministic

variables in the requests to the backend APIs and services. We suggest that at least the deterministic

parts of the requests that can be easily validated or type checked should be verified before they are

processed as a good defense in depth technique, to protect other connected API’s. This is not a

vulnerability, but we suggest implementing this for additional security.

No authentication between the wallet and the backend API
(Low/Informational)

The current architecture of this solution has no coupling between the mobile wallet and the backend

API. The wallet depends on the backend API to operate correctly, but the backend API does not

“authenticate” a specific mobile wallet and can be used by almost anyone since there is no

authentication towards the backend.

We suggest that at least a specific wallet identifies itself to the backend API with an API key that will

be generated and enrolled on a specific wallet install. This will help track API usage patterns and

ensure the fair use of the API.

Keep in mind such measures would allow Enjin to correlate which installed wallet has access to what

addresses. If Enjin decides to implement such measures, make sure to make deanonymization

attacks harder. Note that this is not a vulnerability.

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 16 of 19

Approvals:

In addition with found issues, we want to specifically outline some attacks and methods we tested,

where we found that adequate security measures have been implemented:

No additional content or endpoints were discovered (Approval)

We attempted to discover additional services or applications that might help us expand the attack

surface, but found no additional services or systems or misconfigurations on the test server that

would help us gain more access.

TLS is enforced (Approval)

TLS use on the API is enforced by forcing access only via TLS (port 443) and blocking any access to

port 80 or plain http.

No injection vulnerabilities found (Approval)

During our review, we found no vulnerabilities that stem from combining untrusted input with

specific commands or queries.

No deserialization vulnerabilities found (Approval)

Application does unserialize untrusted input. JSON parsing is done with functions that do not support

evaluation of arbitrary objects or code.

No XXE vulnerabilities found (Approval)

Application does not parse XML or use any XML specific parsing / including.

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 17 of 19

Note on XSS and CSRF (Approval)

The application is a public, unauthenticated backend API that’s being consumed by a mobile

application, where security and data centric decisions (transaction signing) are made on a the

Android application. Since there is no storage layer that whose output be presented to the user in a

browser, there in no risk of XSS vulnerabilities. Since the API is just a public connector to various

blockchain based APIs, there is no CSRF issues either.

Note on access control, authorization and direct object references (Approval)

The API is public, and doesn’t have any access control measures implemented by design, so there is

no access control to test. Authorization is created on the mobile wallet, where a specific transaction

will be signed. There are no direct object references, as the API is just a relay for other specific API’s.

No severe issues found by automated scanners or manual review (Approval)

In order to find the most obvious issues and vulnerabilities, we have scanned the app with several

automated scanners that are a part of our in-house solution for automatic source code and binary

analysis and did a manual review of the application.

None of the scanners or our manual review found any severe issues that were identified as true

positives, the scan results are available as an addition to this report.

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 18 of 19

About Oru & Contact information

This penetration test was conducted by the Oru Security team: doc.dr.sc. Tonimir Kišasondi and
Tomislav Turek, mag.inf.

Tonimir Kišasondi is the Principal Security Researcher at Oru, he finished his PhD in the area of
cryptanalysis at the University of Zagreb. From his industrial cooperation side, for the last 10 years
he specializes in helping software, IoT and blockchain companies from the EU and US build secure
products from the design to the production stage. His professional and research area of interest is
security architecture, application security, security testing & analysis and applied cryptography.

Tomislav Turek is a Researcher at Oru, his masters specialization is in the area of security design
patterns in applications, and has done his professional training and specialization in the Netherlands.
His professional and research focus is in the area of secure architecture design, source code
assessment and security reviews. When he is not testing code written by others, he likes to keep his
Java, Go and Python dev skills current.

Contact Oru:

E-mail: tony@oru.hr ; tom@oru.hr
Web: www.oru.hr
GnuPG Key fingerprint: CC88 9E42 192A CE54 37DF 0B81 2D17 70B3 0F40 907D

SECURITY REVIEW: ENJIN CRYPTO SMART WALLET | ORU

Page 19 of 19

Appendix 1.

Retest of the production API and testing/production APK shows that the following low risk issues

are mitigated:

● Missing tampering and debugging detection (Low/Informational)

● Insufficient Device Binding (Informational)

● Insufficient obfuscation in the APK (Informational)

● Implement specific whitelisting and validation for deterministic variables

